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A. Experimental

A.1.- Intercalation Process

The Ir(111) surface was prepared by cycles of Ar+ ion sputtering at 1.5 keV and 8 μA current 

on the sample, and flash annealing to 1400K. After several cycles, the surface was exposed to 

ethylene at 10‐7 Torr partial pressure while keeping the sample at 1100KS1. This procedure 

results is an atomically flat Ir(111) surface almost completely covered by a single monolayer

of graphene, as shown in Fig. S1a. In addition to the substrate monoatomic steps, some 

wrinkles of the graphene sheet (long white lines) and some graphene free areas (darker 

patches) are resolved. 

Figure S1 270 nm x 400 nm STM images acquired on a gr/Ir(111) sample before (a)and after 
(b) Pb intercalation. The insets show the apparent height distribution on a single terrace 
covering an area of the order of 10000 nm2. The intercalated islands have been highlighted 
for an easier identification.

Evaporating of the order of 100 ML of Pb on the gr/Ir(111) sample at 800 K results in Pb 

intercalation of 20% of the surface, as illustrated in Fig. S1b. Three different intercalation 

centers can be distinguished: monoatomic steps of the Ir substrate, graphene wrinkles and the 

edges of the graphene free areas. The inset in Fig. S1b shows that the apparent height of the 

intercalated regions indicates that they are one Pb atom high. Two main evidences indicate 

that Pb is actually intercalated underneath graphene (rather than being deposited on top of it): 

Atomic resolution images acquired on the Pb-intercalated regions reveal that the graphene’s 

atomic lattice extends continuously across the border towards the neighboring gr/Ir(111) 

areas (see e.g. Figure 1 in main text). Furthermore, some of the graphene wrinkles that extend 

over several terraces arising from the gr/Ir(111) preparation procedure disappear upon Pb 

intercalation, as shown in Fig. S1b. This is due to an in‐plane strain relaxation of the 

graphene sheet driven by the intercalation processS2.

A.2.- Atomic Structure of the Interlayer 

A.2.1.- Pb/Ir(111)

The Ir(111) sample was prepared by several cycles of Ar+ sputtering at 1.5 keV and 8 µA

current on the sample and flash annealing to 1400K. The deposition of Pb was carried out by

keeping the Ir sample at 800K during the evaporation of an equivalent dose of 20 ML of Pb.

The result of this preparation is an almost complete monolayer of Pb/Ir(111), as deduced

from our STM images.

Fig. S2 reproduces the LEED pattern recorded on a Ir(111) sample covered with 1 ML of Pb. 

The corresponding crystallographic structure of the Pb monolayer reflects three domains of a 

c(4×2) rectangular unit cell of Pb atoms. The Pb and Ir related spots in the LEED pattern of 

the Pb-intercalated gr/Ir(111) system (see Fig. S3a below) are identical to the ones shown in 

Fig. S2 proving that the atomic arrangement of the Pb monolayer directly adsorbed on Ir(111) 

is identical to the one observed for the Pb-intercalated gr/Ir(111) system (shown in Fig. 1d). 

In the intercalated system, the graphene overlayer can, thus, be considerd as residing on top 

of an undisturbed c(4×2) monolayer of Pb on the Ir surface.
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Figure S2 Low Energy Electron Diffraction (LEED) pattern acquired for a ML of Pb
deposited on Ir(111). The Ir related spots are framed in yellow. The Pb-derived spots form a 
c(4x2) rectangular structure identical to the one observed from the Pb-intercalated gr/ 
Ir(111) sample.

A.2.2.- gr/Pb/Ir(111)

Fig. S3a shows the LEED pattern obtained from a Pb-intercalated gr/Ir(111) sample with 

80% of the surface intercalated by Pb. The LEED pattern presents the first order diffraction 

spots of the graphene and Ir lattices (marked with grey and black squares respectively), as 

well as the extra spots related to the lattice of Pb (marked with coloured circles). These extra 

spots can be divided into three groups arising from three rotational domains (in red, green and 

blue respectively), each one corresponding to a rectangular c(4×2) Pb superstructure 

commensurated with the Ir lattice. This structure is identical to the one obtained by deposting 

directly Pb on a clean Ir(111) surface.

Figure S3 a, LEED pattern from an 80% intercalated gr/Pb/Ir(111) surface. Black and grey 
squares indicate graphene and Ir spots, respectively. Red green and blue circles mark Pb 
spots from each one of the three rotational domains, respectively; b, Fourier Transform of a 
low voltage STM image acquired on a single domain island of a 20% intercalated 
gr/Pb/Ir(111) sample. Black and grey squares signal graphene and Ir spots respectively. The 
single domain, Pb-derived spots are highlighted in red circles. The inner black circles mark 
the corners of the surface Brillouin Zone, where intervalley scattering rings appear. Notice 
that the Pb spots are commensurate with the ones coming from Ir.

The structural arrangement of the Pb-intercalated islands observed in Fig. 1 of the main text 

is identical to the one of the fully (80%) intercalated sample. This is confirmed in Figure S3b,

which shows a Fast Fourier Transfer (FFT) map obtained from an STM image acquired on a  

gr/Pb/Ir island displaying a single domain. Graphene and Ir spots are marked with grey and 

black squares, respectively and Pb spots are marked with red circles. The additional spots can 

be associated to the moiré structure of the gr/Ir interfaceS1. In agreement with the LEED 

analysis, the resulting Pb-related rectangular structure is commensurated with the Ir lattice. 

This structure is translated to real space in the model presented in Fig. 1c of the main text. 

Notice that our LEED‐STM analysis does not allow to determine the lateral position of the Pb 

lattice. Our election of placing the Pb atoms exactly at threefold positions of the Ir lattice is 

arbitrary. 

A.2.3.- Intervalley scattering and Dirac point

The FFT map of Figure S3b presents additional circular features at the corners of the surface 

Brillouin zone (indicated by black circles), due to inter‐valley scattering between 
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neighbouring Dirac conesS1. Furthermore, since the source STM image was acquired at a very 

small bias voltage (3 mV), the observed scattering signatures can be related to the LDOS at 

the Fermi level. Normalising graphene’s lattice parameter to its freestanding value, we obtain 

a measured ring radius of 2qF=0.36±0.04 nm‐1. Assuming the Fermi velocity of freestanding 

graphene, this leads to an estimated Dirac point of ±110±20 meV for gr/Pb/Ir (the 

indetermination in the sign of the doping comes from the fact that we probed only the Fermi 

level). Additionally, the anisotropy in the intensity of the inter‐valley rings indicates that the 

graphene’s sub‐lattice symmetry is preserved during the intercalation processS3. This is 

consistent with the proposed Pb structure, which is incommensurate with the graphene 

overlayer and does not break its symmetry.

A.2.4.- Three rotational domains of gr/Pb/Ir(111)

One of the implications of the proposed structure is the existence of three possible rotational 

domains, arising from the combination of the hexagonal and rectangular lattices of graphene 

and Pb, respectively. The three domains, clearly present in the LEED pattern of Fig. S3a,

were also resolved by STM. This was achieved by lowering slightly the deposition 

temperature, so that the average domain size was small enough to capture several domains on 

a single STM image with atomic resolution, as the one shown in Fig. S4. This image shows a

50 nm wide intercalated region contained in a single atomic terrace of the substrate, where 

the dark patches correspond to small non intercalated gr/Ir areas. The three domains have 

been labelled d1, d2 and d3 respectively, and shadowed lines have been added as a visual 

guide to mark the domain boundaries. The increased defect density as compared to the image 

shown in Fig. 1 of main text is a side effect of the low deposition temperature. The insets at 

the right of Fig. S4 are the FFT maps (in inverted grayscale) obtained by masking the areas 

corresponding to each domain in the STM image on the left. In the maps the reciprocal 

lattices of graphene (blue) and Pb (red) are resolved, displaying their three possible relative 

orientations.

Figure S4 STM image (50 nm x50 nm) acquired on gr/Pb/Ir(111) prepared at a slightly 
lower deposition temperature. The dark patches are free (without intercalated Pb) gr/Ir 
areas, and the shadowed lines are visual guides to separate the three rotational domains 
(labelled d1, d2 and d3 respectively). The insets at the right are the FFT maps corresponding 
to each domain, where the reciprocal lattices of graphene and Pb have been highlighted in 
blue and red, respectively.

A.3.- STS measurements on islands of different size

All STS spectra (including those in figures 3 and 4 on main text) were acquired by means of 

lock-in detection, using a modulation of 10mV rms, a time constant of 30 ms and an 

integration time per point of 50 ms. Since the total number of points was 300, the time per 

spectrum was close to 15 seconds. Figure S5 compares differential tunnelling conductance 

spectra recorded in the same conditions on small Pb-intercalated graphene islands of different 

average size, and on extended gr/Pb/Ir(111) and gr/ Ir(111) regions. The energy separation 

between pseudo Landau levels scale inversely with the size of the island, while on the larger 

island (50 nm), the spectrum does not show the pseudo Landau levels and reflect only the 

electronic structure of graphene on a complete layer of Pb. The spectrum on gr/Ir(111) is also 

essentially featureless, except for the Dirac points of the moiré superlattice.
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Figure S5 From above to below, differential conductance (STS) spectra recorded at 4.6 K on 
the centre of 6, 10 and 50 nm wide gr/Pb/Ir(111) islands. A reference spectrum recorded on
gr/Ir(111) is displayed in grey. The Fermi level and Dirac point are marked in black and 
orange, respectively. The tunnelling gap was stabilized at -1.5 V and 50 pA. Notice the 
appearance of sharp pseudo Landau levels in the smaller Pb-intercalated islands, with their 
separation depending on the size of the island and the broad, weaker features associated to 
the Dirac points of the moiré superlattice in the larger island and in gr/Ir(111). The numbers 
indicate the assigned quantum numbers, as described in the main text. The spectra have been 
displaced vertically for clarity.

B. Theoretical model

B.1- DFT calculations for Pb/graphene: Spin Orbit Coupling

In order to check the existence of sizeable spin-orbit splitting in the π bands of 

graphene induced by the interaction with Pb, we have performed first-principles Density 

Functional Theory (DFT) calculations [see also section B.3 Methods] for gr/Pb model 

systems that capture the essential features of the one experimentally observed.S3 Specifically, 

we have used a commensurate 2×2 rectangular arrangement of Pb atoms centered at hollow 

sites of the graphene honeycomb lattice, located at different vertical distances. This 

arrangement is practically equivalent to a Pb monolayer in a c(4×2) arrangement with respect 

to the Ir(111) lattice. In figure S6 we show the DFT band structure for two representative 

examples of large and short vertical distances between the graphene plane and the Pb layer.

Figure S6 Band structure along the Γ-X direction for a 2×2 array of Pb atoms at two 
different vertical distances from the graphene layer of 7Å (upper panels) and 2.7Å (lower 
panels) in two different approximations: without Spin-Orbit Coupling (left panels) and with 
Spin-Orbit Coupling (right panels). The orbital character of the bands is shown with different 
colours for C(pz) [blue], Pb(px) [green], Pb(py) [yellow] and Pb(pz) [red].
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As expected, the results shown in Fig S6 indicate that when the Pb and graphene 

layers are far away from each other and Spin-Orbit Coupling (SOC) is not included, the 

resulting bands are simply the superposition of the graphene π bands and the Pb bands with 

well-defined p-character (px, py and pz). Turning on SOC results in a mixing of px and pz Pb 

derived bands that exchange character as we go from the Γ to the X point of the rectangular 

supercell Brillouin zone due to the avoided crossing that appears between them as a result of 

spin-orbit interaction, while the π bands of graphene are not affected by SOC effects. These 

latter shows the Dirac point at a distance of 2/3 from the Γ point along the Γ-X direction due 

to band folding. 

However, when the distance between the Pb and graphene layers is reduced to 2.7Å,

we observe clearly two effects: (i) already in the absence of SOC, there is a strong 

hybridization between the graphene π bands and the Pb derived bands with px and pz

character, and (ii) a rather large spin-orbit splitting of the graphene π bands close to the Fermi 

level that amounts 109 meV. This result is consistent with previous DFT calculations for a 

4x4 array of Pb monomers located at single vacancies in graphene S4, which reveal a giant 

enhancement of the SOC with a valence band splitting at the K point as large as 116.6 meV 

and the opening of a gap. Similar results have been obtained for a 2×2 array of Au atoms 

adsorbed on graphene S3.

B.2.- Tight-binding model and phenomenological Hamiltonian

The electronic spectrum deduced from first principles methods can be understood with a 

relatively simple tight-binding model. This description starts with the usual Hamiltonian for 

𝜋𝜋 electrons of graphene including hoppings up to second nearest neighbours:

𝐻𝐻𝐺𝐺𝐺𝐺 = 𝜖𝜖0��𝑎𝑎𝑖𝑖
†𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖

†𝑏𝑏𝑖𝑖�
𝑖𝑖

− 𝑡𝑡�𝑎𝑎𝑖𝑖
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〈𝑖𝑖𝑗𝑗〉
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†𝑏𝑏𝑗𝑗�
〈〈𝑖𝑖𝑗𝑗〉〉

+ 𝐻𝐻. 𝐶𝐶.

For the Pb monolayer, we consider the 4 outer shell electrons in s, px, py, and pz orbitals and 

hoppings between first nearest neighbours in both x and y directions, parameterized by two-

center Slater-Koster parameters, see Table S1. The Spin-Orbit Coupling is introduced only in 

the subspace of Pb orbitals. We write:
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where the matrix acts on the mono-electronic basis �𝑝𝑝𝑥𝑥 ↑, 𝑝𝑝𝑦𝑦 ↑, 𝑝𝑝𝑧𝑧 ↑, 𝑝𝑝𝑥𝑥 ↓, 𝑝𝑝𝑦𝑦 ↓, 𝑝𝑝𝑧𝑧 ↓�.

TB
parameters 

(eV)
𝜖𝜖0 𝑡𝑡 𝑡𝑡′ 𝜖𝜖𝑠𝑠 𝜖𝜖𝑝𝑝𝑥𝑥 𝜖𝜖𝑝𝑝𝑧𝑧 𝑉𝑉𝑠𝑠𝑝𝑝𝑠𝑠𝑥𝑥 𝑉𝑉𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 𝑉𝑉𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 Δ𝑆𝑆𝑆𝑆 t𝑥𝑥 t𝑧𝑧

7 Å 0.9 2.7 -0.3 5.9 1.65 1.38 0.55 0.45 0.4 -0.1 -0.8 0.9 0 0
2.7 Å 0.3 2.7 -0.3 5.9 1.95 1.38 0.55 0.45 0.4 -0.1 -0.8 0.9 0.38 0.8

Table S1: Tight-binding parameters employed in the calculation.

As shown in Fig. S7, this model reproduces well the DFT bands when the distance between 

the Pb adlayer and graphene is 7 Å. For smaller distances the graphene bands start to 

hybridize with the Pb bands. We introduce hoppings between px,y and pz orbitals of Pb and 

the 6 neighboring carbon atoms of graphene parameterized by tx and tz respectively. The 

bands corresponding to a distance of 2.7 Å with SOC are shown in Fig. S8, where the right 

panel shows a zoom of the lowest energy bands dominated by the graphene Dirac point 

strongly hybridized with one of the Pb bands. The spin-orbit interaction within the Pb bands 

is clearly transferred to graphene bands, in this case by opening a Kane-Mele gap of the order 

of 600 meV.

Figure S7: DFT (in blue) and tight-binding (in red) band structure calculation for a distance 
between graphene and the Pb adatoms of 7 Å, with (right) and without (left) spin-orbit 
coupling. The tight-binding parameters are summarized in Table S1.

Note that the generation of a Kane-Mele coupling is favoured by the fact that the Pb atoms in 

the calculation are assumed to occupy the central positions of graphene hexagons. This does 

not correspond to the situation of the experiments, where the Pb monolayer is 
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As expected, the results shown in Fig S6 indicate that when the Pb and graphene 

layers are far away from each other and Spin-Orbit Coupling (SOC) is not included, the 

resulting bands are simply the superposition of the graphene π bands and the Pb bands with 

well-defined p-character (px, py and pz). Turning on SOC results in a mixing of px and pz Pb 

derived bands that exchange character as we go from the Γ to the X point of the rectangular 

supercell Brillouin zone due to the avoided crossing that appears between them as a result of 

spin-orbit interaction, while the π bands of graphene are not affected by SOC effects. These 

latter shows the Dirac point at a distance of 2/3 from the Γ point along the Γ-X direction due 

to band folding. 

However, when the distance between the Pb and graphene layers is reduced to 2.7Å,

we observe clearly two effects: (i) already in the absence of SOC, there is a strong 

hybridization between the graphene π bands and the Pb derived bands with px and pz

character, and (ii) a rather large spin-orbit splitting of the graphene π bands close to the Fermi 

level that amounts 109 meV. This result is consistent with previous DFT calculations for a 

4x4 array of Pb monomers located at single vacancies in graphene S4, which reveal a giant 

enhancement of the SOC with a valence band splitting at the K point as large as 116.6 meV 

and the opening of a gap. Similar results have been obtained for a 2×2 array of Au atoms 

adsorbed on graphene S3.

B.2.- Tight-binding model and phenomenological Hamiltonian

The electronic spectrum deduced from first principles methods can be understood with a 

relatively simple tight-binding model. This description starts with the usual Hamiltonian for 

𝜋𝜋 electrons of graphene including hoppings up to second nearest neighbours:

𝐻𝐻𝐺𝐺𝐺𝐺 = 𝜖𝜖0��𝑎𝑎𝑖𝑖
†𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖

†𝑏𝑏𝑖𝑖�
𝑖𝑖

− 𝑡𝑡�𝑎𝑎𝑖𝑖
†𝑏𝑏𝑗𝑗

〈𝑖𝑖𝑗𝑗〉

− 𝑡𝑡′ ��𝑎𝑎𝑖𝑖
†𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑖𝑖

†𝑏𝑏𝑗𝑗�
〈〈𝑖𝑖𝑗𝑗〉〉

+ 𝐻𝐻. 𝐶𝐶.

For the Pb monolayer, we consider the 4 outer shell electrons in s, px, py, and pz orbitals and 

hoppings between first nearest neighbours in both x and y directions, parameterized by two-

center Slater-Koster parameters, see Table S1. The Spin-Orbit Coupling is introduced only in 
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Δ𝑆𝑆𝑆𝑆

2

⎝

⎜⎜
⎛
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𝑖𝑖 0 0
0 0 0

0 0 1
0 0 −𝑖𝑖
−1 𝑖𝑖 0

0 0 −1
0 0 −𝑖𝑖
1 𝑖𝑖 0

0 𝑖𝑖 0
−𝑖𝑖 0 0
0 0 0 ⎠

⎟⎟
⎞

,

where the matrix acts on the mono-electronic basis �𝑝𝑝𝑥𝑥 ↑, 𝑝𝑝𝑦𝑦 ↑, 𝑝𝑝𝑧𝑧 ↑, 𝑝𝑝𝑥𝑥 ↓, 𝑝𝑝𝑦𝑦 ↓, 𝑝𝑝𝑧𝑧 ↓�.
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7 Å 0.9 2.7 -0.3 5.9 1.65 1.38 0.55 0.45 0.4 -0.1 -0.8 0.9 0 0
2.7 Å 0.3 2.7 -0.3 5.9 1.95 1.38 0.55 0.45 0.4 -0.1 -0.8 0.9 0.38 0.8

Table S1: Tight-binding parameters employed in the calculation.

As shown in Fig. S7, this model reproduces well the DFT bands when the distance between 

the Pb adlayer and graphene is 7 Å. For smaller distances the graphene bands start to 

hybridize with the Pb bands. We introduce hoppings between px,y and pz orbitals of Pb and 

the 6 neighboring carbon atoms of graphene parameterized by tx and tz respectively. The 

bands corresponding to a distance of 2.7 Å with SOC are shown in Fig. S8, where the right 

panel shows a zoom of the lowest energy bands dominated by the graphene Dirac point 

strongly hybridized with one of the Pb bands. The spin-orbit interaction within the Pb bands 

is clearly transferred to graphene bands, in this case by opening a Kane-Mele gap of the order 

of 600 meV.

Figure S7: DFT (in blue) and tight-binding (in red) band structure calculation for a distance 
between graphene and the Pb adatoms of 7 Å, with (right) and without (left) spin-orbit 
coupling. The tight-binding parameters are summarized in Table S1.

Note that the generation of a Kane-Mele coupling is favoured by the fact that the Pb atoms in 

the calculation are assumed to occupy the central positions of graphene hexagons. This does 

not correspond to the situation of the experiments, where the Pb monolayer is 
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incommensurate with graphene. In order to reproduce the experimental situation, we 

construct an effective Hamiltonian based on group theory arguments, which reproduces the 

spin-orbit features of graphene bands in the situation considered in the microscopic 

calculation.

Figure S8: DFT (in blue) and tight-binding (in red) band structure calculation for a distance 
between graphene and the Pb adatoms of 2.7 Å, with spin-orbit coupling. The right panel 
zooms into the Dirac point region. The tight-binding parameters are summarized in Table S1.

Generically speaking, superlattice perturbations couple to graphene π electrons as scalar and 

gauge potentials. According to our DFT and tight-binding calculations described above, we

assume that the Pb sublayer induces a strong Spin-Orbit Coupling in graphene, similarly to 

the case of heavy adatomsS5. The superlattice formed by the presence of Pb creates spin-

dependent potentials. Since the mirror symmetry of the graphene crystal is broken, such 

potentials contain in general the in-plane spin operators Sx, Sy. The form of such potentials 

can be deduced from group theory arguments. The point group of graphene on an 

incommensurate substrate is the intersection of the original hexagonal group C6v with the 

point group of the substrate. In this case, being interested only on the effect of Pb, and given 

that Pb atoms form a rectangular lattice, we conclude that the symmetry group of the 

substrate is orthorhombic, C2v, which is a subgroup of C6v. Therefore, only the symmetry 

operations of the original group contained in C2v survive. Those are the C2 rotation about the 

axis orthogonal to the graphene plane and inversion operations about the vertical planes 

defined by the dashed and dotted lines in Fig. S9.

Figure S9: Unit cells of the hexagonal (C6v) graphene lattice and the rectangular 
(orthorhombic, C2v) substrate of Pb atoms.

The electronic operators can be classified according to the irreducible representations of C2v

as shown in Table S2. Only complete scalars (~A1) which are even under time reversal 

symmetry may appear in the Hamiltonian. Such combinations are σx, τzσzSz, τzSy, τzσxSy, and

σySx, where σi, τi are Pauli matrices associated to sublattice and valley degrees of freedom 

respectively. 

Irrep T even T odd
𝐴𝐴1 𝜎𝜎𝑥𝑥 -
𝐴𝐴2 - 𝑠𝑠𝑧𝑧
𝐵𝐵1 - 𝜏𝜏𝑧𝑧, 𝑠𝑠𝑦𝑦
𝐵𝐵2 𝜎𝜎𝑧𝑧 𝜎𝜎𝑦𝑦, 𝑠𝑠𝑥𝑥

Table S2: Classification of electronic operators according to the irreducible representations 
of C2v and time reversal (T) operation.
This can be checked straightforwardly by considering the unitary operators that implement 

the symmetry operations of 𝐶𝐶2𝑣𝑣 and time inversion in the Hilbert space of the Bloch wave 

functions at the ±𝐊𝐊 points. Note that the orbital part of the wave function is a vector of the 

form Ψ = (𝜓𝜓𝐴𝐴+, 𝜓𝜓𝐵𝐵+, 𝜓𝜓𝐴𝐴−, 𝜓𝜓𝐵𝐵−)𝑇𝑇 belonging to a 4-dimensional reducible representation of 

𝐶𝐶2𝑣𝑣 that we denote by G, where each entry 𝜓𝜓𝐴𝐴/𝐵𝐵± represents the amplitude of the wave 

function on sublattice A/B at valley ±𝐊𝐊. The matrices of such representation in this basis are:

C2:  𝜏𝜏𝑥𝑥𝜎𝜎𝑥𝑥
𝜎𝜎𝑣𝑣:  𝜎𝜎𝑥𝑥
σ𝑣𝑣′:  𝜏𝜏𝑥𝑥
𝑇𝑇:  𝜏𝜏𝑥𝑥𝐾𝐾

Here T is time inversion and K is complex conjugation. Note that the operators of C2, σ𝑣𝑣, and 

σ𝑣𝑣′ operations commute with each other since 𝐶𝐶2𝑣𝑣 is abelian. With this and the character table 
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incommensurate with graphene. In order to reproduce the experimental situation, we 

construct an effective Hamiltonian based on group theory arguments, which reproduces the 

spin-orbit features of graphene bands in the situation considered in the microscopic 

calculation.

Figure S8: DFT (in blue) and tight-binding (in red) band structure calculation for a distance 
between graphene and the Pb adatoms of 2.7 Å, with spin-orbit coupling. The right panel 
zooms into the Dirac point region. The tight-binding parameters are summarized in Table S1.

Generically speaking, superlattice perturbations couple to graphene π electrons as scalar and 

gauge potentials. According to our DFT and tight-binding calculations described above, we

assume that the Pb sublayer induces a strong Spin-Orbit Coupling in graphene, similarly to 

the case of heavy adatomsS5. The superlattice formed by the presence of Pb creates spin-

dependent potentials. Since the mirror symmetry of the graphene crystal is broken, such 

potentials contain in general the in-plane spin operators Sx, Sy. The form of such potentials 

can be deduced from group theory arguments. The point group of graphene on an 

incommensurate substrate is the intersection of the original hexagonal group C6v with the 

point group of the substrate. In this case, being interested only on the effect of Pb, and given 

that Pb atoms form a rectangular lattice, we conclude that the symmetry group of the 

substrate is orthorhombic, C2v, which is a subgroup of C6v. Therefore, only the symmetry 

operations of the original group contained in C2v survive. Those are the C2 rotation about the 

axis orthogonal to the graphene plane and inversion operations about the vertical planes 

defined by the dashed and dotted lines in Fig. S9.

Figure S9: Unit cells of the hexagonal (C6v) graphene lattice and the rectangular 
(orthorhombic, C2v) substrate of Pb atoms.

The electronic operators can be classified according to the irreducible representations of C2v

as shown in Table S2. Only complete scalars (~A1) which are even under time reversal 

symmetry may appear in the Hamiltonian. Such combinations are σx, τzσzSz, τzSy, τzσxSy, and

σySx, where σi, τi are Pauli matrices associated to sublattice and valley degrees of freedom 

respectively. 

Irrep T even T odd
𝐴𝐴1 𝜎𝜎𝑥𝑥 -
𝐴𝐴2 - 𝑠𝑠𝑧𝑧
𝐵𝐵1 - 𝜏𝜏𝑧𝑧, 𝑠𝑠𝑦𝑦
𝐵𝐵2 𝜎𝜎𝑧𝑧 𝜎𝜎𝑦𝑦, 𝑠𝑠𝑥𝑥

Table S2: Classification of electronic operators according to the irreducible representations 
of C2v and time reversal (T) operation.
This can be checked straightforwardly by considering the unitary operators that implement 

the symmetry operations of 𝐶𝐶2𝑣𝑣 and time inversion in the Hilbert space of the Bloch wave 

functions at the ±𝐊𝐊 points. Note that the orbital part of the wave function is a vector of the 

form Ψ = (𝜓𝜓𝐴𝐴+, 𝜓𝜓𝐵𝐵+, 𝜓𝜓𝐴𝐴−, 𝜓𝜓𝐵𝐵−)𝑇𝑇 belonging to a 4-dimensional reducible representation of 

𝐶𝐶2𝑣𝑣 that we denote by G, where each entry 𝜓𝜓𝐴𝐴/𝐵𝐵± represents the amplitude of the wave 

function on sublattice A/B at valley ±𝐊𝐊. The matrices of such representation in this basis are:

C2:  𝜏𝜏𝑥𝑥𝜎𝜎𝑥𝑥
𝜎𝜎𝑣𝑣:  𝜎𝜎𝑥𝑥
σ𝑣𝑣′:  𝜏𝜏𝑥𝑥
𝑇𝑇:  𝜏𝜏𝑥𝑥𝐾𝐾

Here T is time inversion and K is complex conjugation. Note that the operators of C2, σ𝑣𝑣, and 

σ𝑣𝑣′ operations commute with each other since 𝐶𝐶2𝑣𝑣 is abelian. With this and the character table 
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of the group we classify valley diagonal operators 𝜎𝜎𝑥𝑥,𝑦𝑦,𝑧𝑧 and 𝜏𝜏𝑧𝑧 according to the irreducible 

representations of 𝐶𝐶2𝑣𝑣 as indicated in Table S2.

Irreps of 𝐶𝐶2𝑣𝑣
Double group E E� 2C2 2σ𝑣𝑣 2σ𝑣𝑣′

𝐴𝐴1 1 1 1 1 1
𝐴𝐴2 1 1 1 -1 -1
𝐵𝐵1 1 1 -1 1 -1
𝐵𝐵2 1 1 -1 -1 1
𝐷𝐷1/2 2 -2 0 0 0

Table S3: Character table for 𝐶𝐶2𝑣𝑣 double group.

The spinorial part of the wave function transforms according to the 2-dimensional irreducible 

representation 𝐷𝐷1/2 of the 𝐶𝐶2𝑣𝑣 double group, check the character table in Table S3. In such 

representation the symmetry operations read:

C2:  𝑖𝑖 𝑠𝑠𝑧𝑧
𝜎𝜎𝑣𝑣:  𝑠𝑠𝑦𝑦

σ𝑣𝑣′:  𝑠𝑠𝑥𝑥
𝑇𝑇:  𝑖𝑖 𝑠𝑠𝑦𝑦𝐾𝐾

The transformation properties of 𝑠𝑠𝑖𝑖 matrices are trivially inferred from the reduction

𝐷𝐷1/2  ×  𝐷𝐷1/2 ~ 𝐴𝐴1 + 𝐴𝐴2 + 𝐵𝐵1 + 𝐵𝐵2,

or equivalently from the transformation of 𝑠𝑠𝑖𝑖 matrices under the operations of 𝐶𝐶2𝑣𝑣 double 

group in the 𝐷𝐷1/2 representation. Note that now these operators do not commute with each 

other because the double group is no longer abelian. Then, one may form invariants using 

Tables S2 and S3, obtaining, apart from the Kane-Mele coupling, the following spin-orbit 

coupling terms:

𝜏𝜏𝑧𝑧𝑠𝑠𝑦𝑦

𝜏𝜏𝑧𝑧𝜎𝜎𝑥𝑥𝑠𝑠𝑦𝑦

𝜎𝜎𝑦𝑦𝑠𝑠𝑥𝑥

Such terms transforms trivially under the matrices of the 𝐺𝐺 ×  𝐷𝐷1/2 representation:

C2:  𝑖𝑖 𝜏𝜏𝑥𝑥𝜎𝜎𝑥𝑥𝑠𝑠𝑧𝑧
𝜎𝜎𝑣𝑣:  𝜎𝜎𝑥𝑥𝑠𝑠𝑦𝑦

σ𝑣𝑣′:  𝜏𝜏𝑥𝑥𝑠𝑠𝑥𝑥
𝑇𝑇:  𝑖𝑖 𝜏𝜏𝑥𝑥𝑠𝑠𝑦𝑦𝐾𝐾

Thus, the phenomenological Hamiltonian valid around the Brillouin zone corners ±𝐊𝐊 read in 

general:

𝐻𝐻 = 𝑣𝑣𝐹𝐹𝚺𝚺 ∙ (−𝑖𝑖∇ + 𝑨𝑨) + 𝛽𝛽𝑡𝑡𝜎𝜎𝑥𝑥 ± Δ𝐾𝐾𝐾𝐾𝜎𝜎𝑧𝑧𝑠𝑠𝑧𝑧 ± 𝐴𝐴0𝑠𝑠𝑦𝑦

where 𝚺𝚺 = �±𝜎𝜎𝒙𝒙 , 𝜎𝜎𝑦𝑦�, 𝑨𝑨 = (𝐴𝐴𝑥𝑥𝑠𝑠𝑦𝑦 , 𝐴𝐴𝑦𝑦𝑠𝑠𝑥𝑥), and ± holds for valleys ±𝐊𝐊. The bands deduced 

from this model for 𝛽𝛽 = −0.025,  Δ𝐾𝐾𝐾𝐾 = 0.3 eV and  𝐴𝐴𝑥𝑥 =  𝐴𝐴𝑦𝑦 =  𝐴𝐴0 = 0.02 eV are shown 

in Fig. S10.

Figure S10: DFT (in blue) calculated bands compared with the phenomenological Dirac 
equation (in black).

In the incommensurate situation the Kane-Mele coupling is expected to be strongly 

suppressed. Similarly, we neglect the coupling 𝛽𝛽, so the previous Hamiltonian reduces to the 

one discussed through the main text. At this level, the remaining fields 𝐴𝐴0,𝑥𝑥,𝑦𝑦 are 

phenomenological constants associated to the three independent spin-orbit coupling terms 

that we have constructed with group theory arguments. These fields can be interpreted as the 

components of non-abelian gauge fields since in general �𝑨𝑨𝑖𝑖 , 𝑨𝑨𝑗𝑗� ≠ 0. This situation is 

formally identical to the one in the context of twisted bilayer graphemeS6, where the inter-

layer couplings can be also interpreted as components of non-abelian gauge fields, but in that 

case the additional internal degrees of freedom is the layer instead of the spin. As in that case, 

a non-uniform spatial dependence of these fields could lead to electronic confinement.
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of the group we classify valley diagonal operators 𝜎𝜎𝑥𝑥,𝑦𝑦,𝑧𝑧 and 𝜏𝜏𝑧𝑧 according to the irreducible 

representations of 𝐶𝐶2𝑣𝑣 as indicated in Table S2.

Irreps of 𝐶𝐶2𝑣𝑣
Double group E E� 2C2 2σ𝑣𝑣 2σ𝑣𝑣′

𝐴𝐴1 1 1 1 1 1
𝐴𝐴2 1 1 1 -1 -1
𝐵𝐵1 1 1 -1 1 -1
𝐵𝐵2 1 1 -1 -1 1
𝐷𝐷1/2 2 -2 0 0 0

Table S3: Character table for 𝐶𝐶2𝑣𝑣 double group.

The spinorial part of the wave function transforms according to the 2-dimensional irreducible 

representation 𝐷𝐷1/2 of the 𝐶𝐶2𝑣𝑣 double group, check the character table in Table S3. In such 

representation the symmetry operations read:

C2:  𝑖𝑖 𝑠𝑠𝑧𝑧
𝜎𝜎𝑣𝑣:  𝑠𝑠𝑦𝑦

σ𝑣𝑣′:  𝑠𝑠𝑥𝑥
𝑇𝑇:  𝑖𝑖 𝑠𝑠𝑦𝑦𝐾𝐾

The transformation properties of 𝑠𝑠𝑖𝑖 matrices are trivially inferred from the reduction

𝐷𝐷1/2  ×  𝐷𝐷1/2 ~ 𝐴𝐴1 + 𝐴𝐴2 + 𝐵𝐵1 + 𝐵𝐵2,

or equivalently from the transformation of 𝑠𝑠𝑖𝑖 matrices under the operations of 𝐶𝐶2𝑣𝑣 double 

group in the 𝐷𝐷1/2 representation. Note that now these operators do not commute with each 

other because the double group is no longer abelian. Then, one may form invariants using 

Tables S2 and S3, obtaining, apart from the Kane-Mele coupling, the following spin-orbit 

coupling terms:

𝜏𝜏𝑧𝑧𝑠𝑠𝑦𝑦

𝜏𝜏𝑧𝑧𝜎𝜎𝑥𝑥𝑠𝑠𝑦𝑦

𝜎𝜎𝑦𝑦𝑠𝑠𝑥𝑥

Such terms transforms trivially under the matrices of the 𝐺𝐺 ×  𝐷𝐷1/2 representation:

C2:  𝑖𝑖 𝜏𝜏𝑥𝑥𝜎𝜎𝑥𝑥𝑠𝑠𝑧𝑧
𝜎𝜎𝑣𝑣:  𝜎𝜎𝑥𝑥𝑠𝑠𝑦𝑦

σ𝑣𝑣′:  𝜏𝜏𝑥𝑥𝑠𝑠𝑥𝑥
𝑇𝑇:  𝑖𝑖 𝜏𝜏𝑥𝑥𝑠𝑠𝑦𝑦𝐾𝐾

Thus, the phenomenological Hamiltonian valid around the Brillouin zone corners ±𝐊𝐊 read in 

general:

𝐻𝐻 = 𝑣𝑣𝐹𝐹𝚺𝚺 ∙ (−𝑖𝑖∇ + 𝑨𝑨) + 𝛽𝛽𝑡𝑡𝜎𝜎𝑥𝑥 ± Δ𝐾𝐾𝐾𝐾𝜎𝜎𝑧𝑧𝑠𝑠𝑧𝑧 ± 𝐴𝐴0𝑠𝑠𝑦𝑦

where 𝚺𝚺 = �±𝜎𝜎𝒙𝒙 , 𝜎𝜎𝑦𝑦�, 𝑨𝑨 = (𝐴𝐴𝑥𝑥𝑠𝑠𝑦𝑦 , 𝐴𝐴𝑦𝑦𝑠𝑠𝑥𝑥), and ± holds for valleys ±𝐊𝐊. The bands deduced 

from this model for 𝛽𝛽 = −0.025,  Δ𝐾𝐾𝐾𝐾 = 0.3 eV and  𝐴𝐴𝑥𝑥 =  𝐴𝐴𝑦𝑦 =  𝐴𝐴0 = 0.02 eV are shown 

in Fig. S10.

Figure S10: DFT (in blue) calculated bands compared with the phenomenological Dirac 
equation (in black).

In the incommensurate situation the Kane-Mele coupling is expected to be strongly 

suppressed. Similarly, we neglect the coupling 𝛽𝛽, so the previous Hamiltonian reduces to the 

one discussed through the main text. At this level, the remaining fields 𝐴𝐴0,𝑥𝑥,𝑦𝑦 are 

phenomenological constants associated to the three independent spin-orbit coupling terms 

that we have constructed with group theory arguments. These fields can be interpreted as the 

components of non-abelian gauge fields since in general �𝑨𝑨𝑖𝑖 , 𝑨𝑨𝑗𝑗� ≠ 0. This situation is 

formally identical to the one in the context of twisted bilayer graphemeS6, where the inter-

layer couplings can be also interpreted as components of non-abelian gauge fields, but in that 

case the additional internal degrees of freedom is the layer instead of the spin. As in that case, 

a non-uniform spatial dependence of these fields could lead to electronic confinement.
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Figure S11: Hopping terms leading to A at the ±𝐊𝐊 points.

In order to simulate this phenomenological Hamiltonian we consider the usual tight-binding 

description of graphene in terms of first-neighbors hopping t between 𝜋𝜋 orbitals, then 

𝑣𝑣𝐹𝐹 = 3𝑡𝑡𝑎𝑎/2. The spin-orbit couplings are introduced by considering the suitable spin-flip 

hopping terms. The first neighbors complex hopping terms shown in Fig. S11 generate the 

gauge field 𝑨𝑨. Similarly, the field 𝐴𝐴0 is related to the spin flipping hopping between second 

nearest neighbors illustrated in Fig. S12. We have:

𝐴𝐴0 = 3√3𝜆𝜆0

𝐴𝐴𝑥𝑥 =
𝜆𝜆1 + 𝜆𝜆2
𝑡𝑡𝑎𝑎

𝐴𝐴𝑦𝑦 =
𝜆𝜆1 − 𝜆𝜆2
𝑡𝑡𝑎𝑎

Fig. S12: Hopping terms leading to 𝐴𝐴0 at the ±𝐊𝐊 points.

B.2.- Methods and results

Density Functional Theory (DFT) calculations

The DFT calculations were performed using the VASP codeS7 within the projector 

augmented wave methodS8 to treat ion-electron interactions. The generalized gradient 

approximation to exchange and correlation in the Perdew-Burke-Ernzernhof version S9 was 

used. The Hamiltonian contained the scalar relativistic corrections and the spin-orbit coupling 

was taken into account by the second variation method S10. The energy cut-off in the plane 

wave expansion was 600 eV. Convergency with respect to the k-point sampling was achieved 

using a Monkhorst pack grid of 12×12×1 k-points. For the band structure calculations we 

used 600 k-points along the Γ-X direction of the supercell Brillouin zone, in which the 

original zone boundary point K appears at 1/3 Γ-X distance of the zone boundary point X of 

the rectangular supercell Brillouin zone due to band folding. The rectangular supercell is 2*a0

and √3*a0 large in size along the X and Y directions, respectively, being a0=2.46 Å the 

graphene lattice constant of the honeycomb lattice and, therefore, it contains one Pb and eight 

carbon atoms in the unit cell. In the vertical Z-axis, a minimum distance of 10 Å between 

periodic replicas of the slab were used, but it was extended up to 20 Å, so that we could treat 

also large Pb-graphene distances without spurious effects, something that required a large 

number of plane waves.

Spatial variation of the SOC

In the phenomenological model the transition from gr/Ir to gr/Pb/Ir is modeled as a region 

where the spin-orbit coupling changes from zero to a certain finite value. For simplicity, we 

assume that the spin-orbit coupling changes in the armchair direction (y axis in the previous 

analysis). Translation invariance in the direction along the border between the two regions is 

assumed, so the crystalline momentum (k) along the zig-zag direction is conserved. For each 

k, the problem can be mapped to a generalized tight-binding chain with two atoms per unit 

cell with k-dependent inter-cell hopping terms, see Fig. S13.

We compute the retarded Green function at the sites of the chain where the spin-orbit 

coupling changes. The region where the spin-orbit changes are modeled as a finite chain 

connected to semi-infinite leads where the spin-orbit is taken as a constant. The effect of the 

leads is incorporated as a self-energy, which is computed from the Dyson equation for the 

leads. Then, the Green operator for the chain is calculated, and from this we have the local 

density of states (LDOS) for each k. Finally we integrate in k.
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Figure S11: Hopping terms leading to A at the ±𝐊𝐊 points.

In order to simulate this phenomenological Hamiltonian we consider the usual tight-binding 

description of graphene in terms of first-neighbors hopping t between 𝜋𝜋 orbitals, then 

𝑣𝑣𝐹𝐹 = 3𝑡𝑡𝑎𝑎/2. The spin-orbit couplings are introduced by considering the suitable spin-flip 

hopping terms. The first neighbors complex hopping terms shown in Fig. S11 generate the 

gauge field 𝑨𝑨. Similarly, the field 𝐴𝐴0 is related to the spin flipping hopping between second 

nearest neighbors illustrated in Fig. S12. We have:

𝐴𝐴0 = 3√3𝜆𝜆0

𝐴𝐴𝑥𝑥 =
𝜆𝜆1 + 𝜆𝜆2
𝑡𝑡𝑎𝑎

𝐴𝐴𝑦𝑦 =
𝜆𝜆1 − 𝜆𝜆2
𝑡𝑡𝑎𝑎

Fig. S12: Hopping terms leading to 𝐴𝐴0 at the ±𝐊𝐊 points.

B.2.- Methods and results

Density Functional Theory (DFT) calculations

The DFT calculations were performed using the VASP codeS7 within the projector 

augmented wave methodS8 to treat ion-electron interactions. The generalized gradient 

approximation to exchange and correlation in the Perdew-Burke-Ernzernhof version S9 was 

used. The Hamiltonian contained the scalar relativistic corrections and the spin-orbit coupling 

was taken into account by the second variation method S10. The energy cut-off in the plane 

wave expansion was 600 eV. Convergency with respect to the k-point sampling was achieved 

using a Monkhorst pack grid of 12×12×1 k-points. For the band structure calculations we 

used 600 k-points along the Γ-X direction of the supercell Brillouin zone, in which the 

original zone boundary point K appears at 1/3 Γ-X distance of the zone boundary point X of 

the rectangular supercell Brillouin zone due to band folding. The rectangular supercell is 2*a0

and √3*a0 large in size along the X and Y directions, respectively, being a0=2.46 Å the 

graphene lattice constant of the honeycomb lattice and, therefore, it contains one Pb and eight 

carbon atoms in the unit cell. In the vertical Z-axis, a minimum distance of 10 Å between 

periodic replicas of the slab were used, but it was extended up to 20 Å, so that we could treat 

also large Pb-graphene distances without spurious effects, something that required a large 

number of plane waves.

Spatial variation of the SOC

In the phenomenological model the transition from gr/Ir to gr/Pb/Ir is modeled as a region 

where the spin-orbit coupling changes from zero to a certain finite value. For simplicity, we 

assume that the spin-orbit coupling changes in the armchair direction (y axis in the previous 

analysis). Translation invariance in the direction along the border between the two regions is 

assumed, so the crystalline momentum (k) along the zig-zag direction is conserved. For each 

k, the problem can be mapped to a generalized tight-binding chain with two atoms per unit 

cell with k-dependent inter-cell hopping terms, see Fig. S13.

We compute the retarded Green function at the sites of the chain where the spin-orbit 

coupling changes. The region where the spin-orbit changes are modeled as a finite chain 

connected to semi-infinite leads where the spin-orbit is taken as a constant. The effect of the 

leads is incorporated as a self-energy, which is computed from the Dyson equation for the 

leads. Then, the Green operator for the chain is calculated, and from this we have the local 

density of states (LDOS) for each k. Finally we integrate in k.
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Figure S13: Translation invariance in the zig-zag direction is assumed. The problem for 
each k can be mapped to a 1 dimensional tight-binding chain with 2 atoms per unit cell, 
where the (complex) hopping between cells (in blue) depends on k expressively. A finite chain 
(the region where the spin-orbit changes) is connected to two semi-infinite leads (where the 
spin-orbit is taken as a constant). The effect of the semi-infinite leads is incorporated to the 
Green operator of the chain by means of a certain self-energy, which is computed from the 
solution of the Dyson equation for the leads.

The results when only the gauge potential A is included are shown in Fig. S14. We assume a 

spatial profile for 𝜆𝜆1,2 as the one shown in Fig. 4a of the main text. The LDOS develops 

peaks for considerable strong spin-orbit couplings (maximum values), 𝜆𝜆1,2 ≽ 0.1 𝑡𝑡. In the 

case of 𝜆𝜆1~𝜆𝜆2, the spectrum resembles the one of Landau levels due to a real magnetic field

applied to graphene.

Figure S14: LDOS when only the gauge potential A is considered.

In order to obtain a sequence of peaks qualitatively more similar to the ones obtained in the 

experiments we must include the scalar potential 𝐴𝐴0. The calculation shown in Fig 4b of the 

main text corresponds to a uniform scalar potential of 𝜆𝜆0 = 0.02 𝑡𝑡. If we assume for 𝜆𝜆0 the 

same spatially varying profile as for 𝜆𝜆1,2, the result, as shown in Fig. S15, is similar (compare 

to Fig. 4b).

Figure S15: LDOS when both the gauge A and scalar 𝐴𝐴0 potentials are considered. The 
spatial profile is the same in both cases. The maximum values of the couplings are 𝜆𝜆1,2 = 0.5 𝑡𝑡,
𝜆𝜆0 = 0.02 𝑡𝑡.

B.3.- Topological aspects

According to the tight-binding calculation, the peaks are clearer when 𝜆𝜆1 and 𝜆𝜆2 are of the 

same order, and they seem to follow the same sequence as the Landau levels of the Dirac 

Hamiltonian. Consider the previous Hamiltonian. If we set 𝜆𝜆1 = 𝜆𝜆2 = 𝜆𝜆(𝑦𝑦), the components 

of the gauge field reduce to 𝐴𝐴𝑥𝑥 = 2𝜆𝜆(𝑦𝑦)/𝑡𝑡𝑎𝑎 and 𝐴𝐴𝑦𝑦 = 0. Note that this field, under a U(2) 

(global) transformation of the form 𝑈𝑈 = exp �𝑖𝑖 𝑝𝑝
4
𝐼𝐼 − 𝑖𝑖 𝑝𝑝

3√3
∑ 𝑠𝑠𝑖𝑖𝑖𝑖 �, it is equivalent to an abelian 

gauge field with opposite sign for each spin component.

Therefore, under this U(2) transformation the phenomenological Hamiltonian is mapped to 

two copies of the Dirac equation in the presence of an out-of-plane magnetic field with 

opposite sign for each spin projection. This situation resembles the quantum valley hall state 

proposed in graphene, where strain generates pseudo-magnetic fields with opposite sign at 

each valleyS11, but in this case the valley degree of freedom is replaced by spin. Moreover, 

the present model consists of two copies of the quantum spin hall state proposed by Bernevig 

and ZhangS12. Thus, surrounding Pb regions we expect a situation qualitatively similar to the 

one depicted in the inset of Fig. 4 of the main text. The Pb islands induce a strong spin-orbit 

coupling in graphene, which decays as we get away from the islands. Surrounding the region 

where the spin-orbit coupling changes, symbolized by the colour gradient, we expect spin-
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Figure S13: Translation invariance in the zig-zag direction is assumed. The problem for 
each k can be mapped to a 1 dimensional tight-binding chain with 2 atoms per unit cell, 
where the (complex) hopping between cells (in blue) depends on k expressively. A finite chain 
(the region where the spin-orbit changes) is connected to two semi-infinite leads (where the 
spin-orbit is taken as a constant). The effect of the semi-infinite leads is incorporated to the 
Green operator of the chain by means of a certain self-energy, which is computed from the 
solution of the Dyson equation for the leads.

The results when only the gauge potential A is included are shown in Fig. S14. We assume a 

spatial profile for 𝜆𝜆1,2 as the one shown in Fig. 4a of the main text. The LDOS develops 

peaks for considerable strong spin-orbit couplings (maximum values), 𝜆𝜆1,2 ≽ 0.1 𝑡𝑡. In the 

case of 𝜆𝜆1~𝜆𝜆2, the spectrum resembles the one of Landau levels due to a real magnetic field

applied to graphene.

Figure S14: LDOS when only the gauge potential A is considered.

In order to obtain a sequence of peaks qualitatively more similar to the ones obtained in the 

experiments we must include the scalar potential 𝐴𝐴0. The calculation shown in Fig 4b of the 

main text corresponds to a uniform scalar potential of 𝜆𝜆0 = 0.02 𝑡𝑡. If we assume for 𝜆𝜆0 the 

same spatially varying profile as for 𝜆𝜆1,2, the result, as shown in Fig. S15, is similar (compare 

to Fig. 4b).

Figure S15: LDOS when both the gauge A and scalar 𝐴𝐴0 potentials are considered. The 
spatial profile is the same in both cases. The maximum values of the couplings are 𝜆𝜆1,2 = 0.5 𝑡𝑡,
𝜆𝜆0 = 0.02 𝑡𝑡.

B.3.- Topological aspects

According to the tight-binding calculation, the peaks are clearer when 𝜆𝜆1 and 𝜆𝜆2 are of the 

same order, and they seem to follow the same sequence as the Landau levels of the Dirac 

Hamiltonian. Consider the previous Hamiltonian. If we set 𝜆𝜆1 = 𝜆𝜆2 = 𝜆𝜆(𝑦𝑦), the components 

of the gauge field reduce to 𝐴𝐴𝑥𝑥 = 2𝜆𝜆(𝑦𝑦)/𝑡𝑡𝑎𝑎 and 𝐴𝐴𝑦𝑦 = 0. Note that this field, under a U(2) 

(global) transformation of the form 𝑈𝑈 = exp �𝑖𝑖 𝑝𝑝
4
𝐼𝐼 − 𝑖𝑖 𝑝𝑝

3√3
∑ 𝑠𝑠𝑖𝑖𝑖𝑖 �, it is equivalent to an abelian 

gauge field with opposite sign for each spin component.

Therefore, under this U(2) transformation the phenomenological Hamiltonian is mapped to 

two copies of the Dirac equation in the presence of an out-of-plane magnetic field with 

opposite sign for each spin projection. This situation resembles the quantum valley hall state 

proposed in graphene, where strain generates pseudo-magnetic fields with opposite sign at 

each valleyS11, but in this case the valley degree of freedom is replaced by spin. Moreover, 

the present model consists of two copies of the quantum spin hall state proposed by Bernevig 

and ZhangS12. Thus, surrounding Pb regions we expect a situation qualitatively similar to the 

one depicted in the inset of Fig. 4 of the main text. The Pb islands induce a strong spin-orbit 

coupling in graphene, which decays as we get away from the islands. Surrounding the region 

where the spin-orbit coupling changes, symbolized by the colour gradient, we expect spin-
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polarized counter-propagating edge states. Note that the spin polarization is in-plane, which 

makes these spin currents more difficult to be detected.

Interestingly, the scalar field separates in energy the sequence of Landau peaks associated to 

each Kramers pair for which the system is a ℤ2 topological insulatorS13. This energy 

separation allows populating an odd number of Landau levels. In that situation, an odd 

number of Kramers pairs of edge modes cross the Fermi level, and therefore, at least one pair 

of the counter propagating edge channels is topologically protected against disorder by time-

reversal symmetry. The characteristic decay length of these modes into the region where the

spin-orbit changes goes like ℓ ∼ 3𝑡𝑡𝑎𝑎/√2Δ, where Δ is the energy separation between pseudo-

Landau levels. From the experiments we have roughlyΔ = 0.1 𝑡𝑡, so we expect ℓ ∼ 20 𝑎𝑎,

which is less than the characteristic length (∼ 60 𝑎𝑎) over which the spin-orbit changes in the 

numerical calculation.

Finally, the robustness of this picture is discussed, since in the previous dissertation 𝜆𝜆1 = 𝜆𝜆2
is assumed. If 𝜆𝜆1 ≠ 𝜆𝜆2 then we have a non-zero y component of the gauge field. This 

component can be gauged away by a local U(2) transformation of the form 𝑈𝑈(𝑦𝑦) =

𝑒𝑒𝑖𝑖 ∫ 𝑑𝑑𝑑𝑑 𝐴𝐴𝑦𝑦(𝑑𝑑)𝑦𝑦
0 𝑠𝑠𝑥𝑥. This makes the x component to oscillate in spin space during the characteristic 

length ℒ = 𝜋𝜋𝑡𝑡𝑡𝑡/〈𝜆𝜆1 − 𝜆𝜆2〉, where the brackets denote the mean value. The precession in spin 

space is the manifestation of the non-abelian nature of the gauge field. The problem is no

longer equivalent to two copies of the Dirac equation in the presence of a magnetic field with 

opposite sign for each spin projection. Nevertheless, for slow precession, ℓ/ℒ ≪ 1, the 

Landau levels are expected to survive, as shown in the numerical calculation. Given that the 

Landau gaps remain open the survival of the topological properties of the system are 

guaranteed.
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polarized counter-propagating edge states. Note that the spin polarization is in-plane, which 

makes these spin currents more difficult to be detected.

Interestingly, the scalar field separates in energy the sequence of Landau peaks associated to 

each Kramers pair for which the system is a ℤ2 topological insulatorS13. This energy 

separation allows populating an odd number of Landau levels. In that situation, an odd 

number of Kramers pairs of edge modes cross the Fermi level, and therefore, at least one pair 

of the counter propagating edge channels is topologically protected against disorder by time-

reversal symmetry. The characteristic decay length of these modes into the region where the

spin-orbit changes goes like ℓ ∼ 3𝑡𝑡𝑎𝑎/√2Δ, where Δ is the energy separation between pseudo-

Landau levels. From the experiments we have roughlyΔ = 0.1 𝑡𝑡, so we expect ℓ ∼ 20 𝑎𝑎,

which is less than the characteristic length (∼ 60 𝑎𝑎) over which the spin-orbit changes in the 

numerical calculation.

Finally, the robustness of this picture is discussed, since in the previous dissertation 𝜆𝜆1 = 𝜆𝜆2
is assumed. If 𝜆𝜆1 ≠ 𝜆𝜆2 then we have a non-zero y component of the gauge field. This 

component can be gauged away by a local U(2) transformation of the form 𝑈𝑈(𝑦𝑦) =
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length ℒ = 𝜋𝜋𝑡𝑡𝑡𝑡/〈𝜆𝜆1 − 𝜆𝜆2〉, where the brackets denote the mean value. The precession in spin 

space is the manifestation of the non-abelian nature of the gauge field. The problem is no

longer equivalent to two copies of the Dirac equation in the presence of a magnetic field with 

opposite sign for each spin projection. Nevertheless, for slow precession, ℓ/ℒ ≪ 1, the 

Landau levels are expected to survive, as shown in the numerical calculation. Given that the 

Landau gaps remain open the survival of the topological properties of the system are 

guaranteed.
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